王依宵
王依宵🚪,副教授,研究員🤾🏼♂️🧑🏽,博導 Yixiao Wang, Tenure-Track Associate Professor
通訊地址:物質學院8號樓305 SPST8-305
電子郵箱:https://doi.org/10.1002/cssc.202201290
2. Wang, Y., Sourav, S.,Fushimi, R.R,Deciphering the mechanistic role of individual oxide phases and their combinations in supported Mn-Na2WO4 catalysts for oxidative coupling of methane, ACS Catalysis 2022, 12, 11886-11898
3. Wang, Y., Wang, B.,Fushimi, R.R,Mechanistic pathways and role of oxygen in oxidative coupling of methane derived from transient kinetic studies, Catalysis Today, 2022. (In Press)
4. S Sourav, D Kiani, Y Wang*, J Baltrusaitis, RR Fushimi, IE Wachs, Molecular structure and catalytic promotional effect of Mn on supported Na2WO4/SiO2 catalysts for oxidative coupling of methane (OCM) reaction, Catalysis Today, 2022. (In Press, corresponding author)
5. Wang, Y., Qian J., Fortunelli A., Goddard III W.A. & Fushimi, R. (2021) Understanding Reaction Networks through Controlled Approach to Equilibrium Experiments Using Transient Methods, Journal of the American Chemical Society, 143 (29), 10998–11006
6. Sourav, S., Wang, Y.*; Kiani, D.; Baltrusaitis, J.; Fushimi, R. R.; Wachs, I. E., (2021) Resolving the Types and Origin of Active Oxygen Species Present in Supported Mn-Na2WO4/SiO2 Catalysts for Oxidative Coupling of Methane. ACS Catalysis, 11(16)10288-10293. (corresponding author)
7. Sourav, S., Wang, Y.*, Kiani, D., Baltrusaitis, J., Fushimi, R.R. and Wachs, I..E. (2021), New Mechanistic and Reaction Pathway Insights for Oxidative Coupling of Methane (OCM) over Supported Na2WO4/SiO2 Catalysts. Angew. Chem. Int. Ed. (corresponding author)
8. Wang, Y., Yablonsky, G., Fushimi, R.R, Precise composition/kinetic characterization of solid catalysts using temporal analysis of products. Catalysis. 2021. 114-152. (book chapter)
9. Wang, Y., Fushimi, R.R, Springer Handbook of Advanced Catalyst Characterization: Temporal Analysis of Product (TAP) (book chapter)
10. Wang, Y., Kunz, M. R., Siebers, S., Rollins, H., Gleaves, J., Yablonsky, G., & Fushimi, R. (2019). Transient kinetic experiments within the high conversion domain: The case of ammonia decomposition. Catalysts, 9(1),104.
11. Wang, Y., Kunz, M. R., Fang,T., Yablonsky, G., & Fushimi, R. (2019). Accumulation dynamic as a new tool for catalyst discrimination: An example from ammonia decomposition. Industrial & Engineering Chemistry Research. 58 (24), 10238-10248
12. Wang, Y., Kunz, M. R., Constales,D., Yablonsky, G., & Fushimi, R. (2019). Rate/Concentration Kinetic Petals from Pulse-Response Transient Studies: Surface Processes Examined from Ammonia Decomposition Experiments. The Journal of Physical Chemistry A 123 (40), 8717-8725
13. Wang, Y., & Makkee, M. (2018). Fundamental understanding of the Di-Air system (an alternative NOx abatement technology). I: The difference in reductant pre-treatment of ceria. Applied Catalysis B: Environmental. 223, 125-133.
14. Wang, Y., & Makkee, M. (2018). The influence of CO2 on NO reduction to N2 over reduced ceria – based catalyst, Applied Catalysis B: Environmental. 221, 196-205
15. Wang, Y., & Makkee, M. (2018). Adverse effects of Potassium on NOx reduction over Di-Air catalyst (Rh/La- Ce-Zr). Applied Catalysis B: Environmental 117895
16. Wang, Y., Kapteijn, F., & Makkee, M. (2018). NOx reduction in the Di-Air system over noble metal promoted ceria. Applied Catalysis B: Environmental, 231, 200-212.
17. Wang, Y., & Makkee, M. (2018). A new dynamic N2O decomposition system by exploring reduced Rh/ceriazirconia with deposited carbon: from mechanistic insight to principle application. Catalysis Science & Technology 11 (2), 671-680
18. Wang, Y., & Makkee, M., (2017). Reaction Mechanism Study of the Di-Air System and Selectivity and Reactivity of NO Reduction in Excess O2. SAE International Journal of Engines, 10(2017-01-0910).
19. Wang, Y., Oord, R., van der Berg, D., Weckhuysen,B., & Makkee, M., (2017). Oxygen Vacancies in reduced Rh‐and Pt‐ceria for Highly Selective and Reactive Reduction of NO into N2 in excess of O2. ChemCatChem. 9(15), 2935-2938.
20. Wang, Y., Posthuma de Boer, J., Kapteijn, F., & Makkee, M. (2016). Next Generation Automotive DeNOx Catalysts: Ceria What Else?. ChemCatChem, 8(1), 102-105. (Inside cover)
21. Wang, Y., de Boer, J. P., Kapteijn, F., & Makkee, M. (2016). Fundamental Understanding of the Di-Air System: The Role of Ceria in NOx?. Topics in Catalysis, 59(10-12), 854-860.